Copied to
clipboard

G = C42.114D10order 320 = 26·5

114th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.114D10, C10.202+ 1+4, (C4×D4)⋊21D5, (D4×C20)⋊23C2, C4⋊C4.319D10, C20⋊D4.9C2, D208C416C2, (C4×Dic10)⋊34C2, (C2×D4).220D10, C4.16(C4○D20), C4.D2019C2, C20.17D49C2, (C22×C4).48D10, Dic53Q816C2, D10.12D48C2, C20.111(C4○D4), (C4×C20).158C22, (C2×C20).701C23, (C2×C10).103C24, C22⋊C4.116D10, Dic5.5D48C2, C2.21(D46D10), Dic5.61(C4○D4), (C2×D20).145C22, (D4×C10).263C22, C4⋊Dic5.301C22, (C2×Dic5).44C23, (C4×Dic5).84C22, (C22×D5).37C23, C22.128(C23×D5), C23.100(C22×D5), D10⋊C4.87C22, C23.23D1018C2, (C22×C20).365C22, (C22×C10).173C23, C51(C22.53C24), C10.D4.66C22, C23.D5.107C22, (C2×Dic10).151C22, (C4×C5⋊D4)⋊45C2, C2.26(D5×C4○D4), C10.45(C2×C4○D4), C2.52(C2×C4○D20), (C2×C4×D5).253C22, (C5×C4⋊C4).332C22, (C2×C4).286(C22×D5), (C2×C5⋊D4).124C22, (C5×C22⋊C4).127C22, SmallGroup(320,1231)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.114D10
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C42.114D10
C5C2×C10 — C42.114D10
C1C22C4×D4

Generators and relations for C42.114D10
 G = < a,b,c,d | a4=b4=1, c10=d2=b2, ab=ba, cac-1=a-1b2, dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=c9 >

Subgroups: 838 in 236 conjugacy classes, 97 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C4×D4, C4×D4, C4×Q8, C22.D4, C4.4D4, C41D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22.53C24, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C2×C5⋊D4, C22×C20, D4×C10, C4×Dic10, C4.D20, D10.12D4, Dic5.5D4, Dic53Q8, D208C4, C4×C5⋊D4, C23.23D10, C20.17D4, C20⋊D4, D4×C20, C42.114D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.53C24, C4○D20, C23×D5, C2×C4○D20, D46D10, D5×C4○D4, C42.114D10

Smallest permutation representation of C42.114D10
On 160 points
Generators in S160
(1 94 39 70)(2 61 40 85)(3 96 21 72)(4 63 22 87)(5 98 23 74)(6 65 24 89)(7 100 25 76)(8 67 26 91)(9 82 27 78)(10 69 28 93)(11 84 29 80)(12 71 30 95)(13 86 31 62)(14 73 32 97)(15 88 33 64)(16 75 34 99)(17 90 35 66)(18 77 36 81)(19 92 37 68)(20 79 38 83)(41 148 128 108)(42 119 129 159)(43 150 130 110)(44 101 131 141)(45 152 132 112)(46 103 133 143)(47 154 134 114)(48 105 135 145)(49 156 136 116)(50 107 137 147)(51 158 138 118)(52 109 139 149)(53 160 140 120)(54 111 121 151)(55 142 122 102)(56 113 123 153)(57 144 124 104)(58 115 125 155)(59 146 126 106)(60 117 127 157)
(1 156 11 146)(2 157 12 147)(3 158 13 148)(4 159 14 149)(5 160 15 150)(6 141 16 151)(7 142 17 152)(8 143 18 153)(9 144 19 154)(10 145 20 155)(21 118 31 108)(22 119 32 109)(23 120 33 110)(24 101 34 111)(25 102 35 112)(26 103 36 113)(27 104 37 114)(28 105 38 115)(29 106 39 116)(30 107 40 117)(41 72 51 62)(42 73 52 63)(43 74 53 64)(44 75 54 65)(45 76 55 66)(46 77 56 67)(47 78 57 68)(48 79 58 69)(49 80 59 70)(50 61 60 71)(81 123 91 133)(82 124 92 134)(83 125 93 135)(84 126 94 136)(85 127 95 137)(86 128 96 138)(87 129 97 139)(88 130 98 140)(89 131 99 121)(90 132 100 122)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 26 31 36)(22 35 32 25)(23 24 33 34)(27 40 37 30)(28 29 38 39)(41 123 51 133)(42 132 52 122)(43 121 53 131)(44 130 54 140)(45 139 55 129)(46 128 56 138)(47 137 57 127)(48 126 58 136)(49 135 59 125)(50 124 60 134)(61 68 71 78)(62 77 72 67)(63 66 73 76)(64 75 74 65)(69 80 79 70)(81 96 91 86)(82 85 92 95)(83 94 93 84)(87 90 97 100)(88 99 98 89)(101 150 111 160)(102 159 112 149)(103 148 113 158)(104 157 114 147)(105 146 115 156)(106 155 116 145)(107 144 117 154)(108 153 118 143)(109 142 119 152)(110 151 120 141)

G:=sub<Sym(160)| (1,94,39,70)(2,61,40,85)(3,96,21,72)(4,63,22,87)(5,98,23,74)(6,65,24,89)(7,100,25,76)(8,67,26,91)(9,82,27,78)(10,69,28,93)(11,84,29,80)(12,71,30,95)(13,86,31,62)(14,73,32,97)(15,88,33,64)(16,75,34,99)(17,90,35,66)(18,77,36,81)(19,92,37,68)(20,79,38,83)(41,148,128,108)(42,119,129,159)(43,150,130,110)(44,101,131,141)(45,152,132,112)(46,103,133,143)(47,154,134,114)(48,105,135,145)(49,156,136,116)(50,107,137,147)(51,158,138,118)(52,109,139,149)(53,160,140,120)(54,111,121,151)(55,142,122,102)(56,113,123,153)(57,144,124,104)(58,115,125,155)(59,146,126,106)(60,117,127,157), (1,156,11,146)(2,157,12,147)(3,158,13,148)(4,159,14,149)(5,160,15,150)(6,141,16,151)(7,142,17,152)(8,143,18,153)(9,144,19,154)(10,145,20,155)(21,118,31,108)(22,119,32,109)(23,120,33,110)(24,101,34,111)(25,102,35,112)(26,103,36,113)(27,104,37,114)(28,105,38,115)(29,106,39,116)(30,107,40,117)(41,72,51,62)(42,73,52,63)(43,74,53,64)(44,75,54,65)(45,76,55,66)(46,77,56,67)(47,78,57,68)(48,79,58,69)(49,80,59,70)(50,61,60,71)(81,123,91,133)(82,124,92,134)(83,125,93,135)(84,126,94,136)(85,127,95,137)(86,128,96,138)(87,129,97,139)(88,130,98,140)(89,131,99,121)(90,132,100,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,26,31,36)(22,35,32,25)(23,24,33,34)(27,40,37,30)(28,29,38,39)(41,123,51,133)(42,132,52,122)(43,121,53,131)(44,130,54,140)(45,139,55,129)(46,128,56,138)(47,137,57,127)(48,126,58,136)(49,135,59,125)(50,124,60,134)(61,68,71,78)(62,77,72,67)(63,66,73,76)(64,75,74,65)(69,80,79,70)(81,96,91,86)(82,85,92,95)(83,94,93,84)(87,90,97,100)(88,99,98,89)(101,150,111,160)(102,159,112,149)(103,148,113,158)(104,157,114,147)(105,146,115,156)(106,155,116,145)(107,144,117,154)(108,153,118,143)(109,142,119,152)(110,151,120,141)>;

G:=Group( (1,94,39,70)(2,61,40,85)(3,96,21,72)(4,63,22,87)(5,98,23,74)(6,65,24,89)(7,100,25,76)(8,67,26,91)(9,82,27,78)(10,69,28,93)(11,84,29,80)(12,71,30,95)(13,86,31,62)(14,73,32,97)(15,88,33,64)(16,75,34,99)(17,90,35,66)(18,77,36,81)(19,92,37,68)(20,79,38,83)(41,148,128,108)(42,119,129,159)(43,150,130,110)(44,101,131,141)(45,152,132,112)(46,103,133,143)(47,154,134,114)(48,105,135,145)(49,156,136,116)(50,107,137,147)(51,158,138,118)(52,109,139,149)(53,160,140,120)(54,111,121,151)(55,142,122,102)(56,113,123,153)(57,144,124,104)(58,115,125,155)(59,146,126,106)(60,117,127,157), (1,156,11,146)(2,157,12,147)(3,158,13,148)(4,159,14,149)(5,160,15,150)(6,141,16,151)(7,142,17,152)(8,143,18,153)(9,144,19,154)(10,145,20,155)(21,118,31,108)(22,119,32,109)(23,120,33,110)(24,101,34,111)(25,102,35,112)(26,103,36,113)(27,104,37,114)(28,105,38,115)(29,106,39,116)(30,107,40,117)(41,72,51,62)(42,73,52,63)(43,74,53,64)(44,75,54,65)(45,76,55,66)(46,77,56,67)(47,78,57,68)(48,79,58,69)(49,80,59,70)(50,61,60,71)(81,123,91,133)(82,124,92,134)(83,125,93,135)(84,126,94,136)(85,127,95,137)(86,128,96,138)(87,129,97,139)(88,130,98,140)(89,131,99,121)(90,132,100,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,26,31,36)(22,35,32,25)(23,24,33,34)(27,40,37,30)(28,29,38,39)(41,123,51,133)(42,132,52,122)(43,121,53,131)(44,130,54,140)(45,139,55,129)(46,128,56,138)(47,137,57,127)(48,126,58,136)(49,135,59,125)(50,124,60,134)(61,68,71,78)(62,77,72,67)(63,66,73,76)(64,75,74,65)(69,80,79,70)(81,96,91,86)(82,85,92,95)(83,94,93,84)(87,90,97,100)(88,99,98,89)(101,150,111,160)(102,159,112,149)(103,148,113,158)(104,157,114,147)(105,146,115,156)(106,155,116,145)(107,144,117,154)(108,153,118,143)(109,142,119,152)(110,151,120,141) );

G=PermutationGroup([[(1,94,39,70),(2,61,40,85),(3,96,21,72),(4,63,22,87),(5,98,23,74),(6,65,24,89),(7,100,25,76),(8,67,26,91),(9,82,27,78),(10,69,28,93),(11,84,29,80),(12,71,30,95),(13,86,31,62),(14,73,32,97),(15,88,33,64),(16,75,34,99),(17,90,35,66),(18,77,36,81),(19,92,37,68),(20,79,38,83),(41,148,128,108),(42,119,129,159),(43,150,130,110),(44,101,131,141),(45,152,132,112),(46,103,133,143),(47,154,134,114),(48,105,135,145),(49,156,136,116),(50,107,137,147),(51,158,138,118),(52,109,139,149),(53,160,140,120),(54,111,121,151),(55,142,122,102),(56,113,123,153),(57,144,124,104),(58,115,125,155),(59,146,126,106),(60,117,127,157)], [(1,156,11,146),(2,157,12,147),(3,158,13,148),(4,159,14,149),(5,160,15,150),(6,141,16,151),(7,142,17,152),(8,143,18,153),(9,144,19,154),(10,145,20,155),(21,118,31,108),(22,119,32,109),(23,120,33,110),(24,101,34,111),(25,102,35,112),(26,103,36,113),(27,104,37,114),(28,105,38,115),(29,106,39,116),(30,107,40,117),(41,72,51,62),(42,73,52,63),(43,74,53,64),(44,75,54,65),(45,76,55,66),(46,77,56,67),(47,78,57,68),(48,79,58,69),(49,80,59,70),(50,61,60,71),(81,123,91,133),(82,124,92,134),(83,125,93,135),(84,126,94,136),(85,127,95,137),(86,128,96,138),(87,129,97,139),(88,130,98,140),(89,131,99,121),(90,132,100,122)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,26,31,36),(22,35,32,25),(23,24,33,34),(27,40,37,30),(28,29,38,39),(41,123,51,133),(42,132,52,122),(43,121,53,131),(44,130,54,140),(45,139,55,129),(46,128,56,138),(47,137,57,127),(48,126,58,136),(49,135,59,125),(50,124,60,134),(61,68,71,78),(62,77,72,67),(63,66,73,76),(64,75,74,65),(69,80,79,70),(81,96,91,86),(82,85,92,95),(83,94,93,84),(87,90,97,100),(88,99,98,89),(101,150,111,160),(102,159,112,149),(103,148,113,158),(104,157,114,147),(105,146,115,156),(106,155,116,145),(107,144,117,154),(108,153,118,143),(109,142,119,152),(110,151,120,141)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H4I4J4K4L4M4N4O4P4Q5A5B10A···10F10G···10N20A···20H20I···20X
order122222224···44444444445510···1010···1020···2020···20
size11114420202···241010101020202020222···24···42···24···4

65 irreducible representations

dim111111111111222222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D10D10C4○D202+ 1+4D46D10D5×C4○D4
kernelC42.114D10C4×Dic10C4.D20D10.12D4Dic5.5D4Dic53Q8D208C4C4×C5⋊D4C23.23D10C20.17D4C20⋊D4D4×C20C4×D4Dic5C20C42C22⋊C4C4⋊C4C22×C4C2×D4C4C10C2C2
# reps1112211221112442424216144

Matrix representation of C42.114D10 in GL6(𝔽41)

3240000
090000
001000
000100
00002629
0000515
,
9370000
0320000
0040000
0004000
0000320
0000032
,
900000
090000
00343400
007100
0000913
0000032
,
3200000
2190000
00343400
001700
000090
000009

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,4,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,26,5,0,0,0,0,29,15],[9,0,0,0,0,0,37,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,0,0,0,0,9,0,0,0,0,0,13,32],[32,21,0,0,0,0,0,9,0,0,0,0,0,0,34,1,0,0,0,0,34,7,0,0,0,0,0,0,9,0,0,0,0,0,0,9] >;

C42.114D10 in GAP, Magma, Sage, TeX

C_4^2._{114}D_{10}
% in TeX

G:=Group("C4^2.114D10");
// GroupNames label

G:=SmallGroup(320,1231);
// by ID

G=gap.SmallGroup(320,1231);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽